Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 14(11): e1007772, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30419011

RESUMO

Cell type-specific modifications of conventional endosomal trafficking pathways lead to the formation of lysosome-related organelles (LROs). C. elegans gut granules are intestinally restricted LROs that coexist with conventional degradative lysosomes. The formation of gut granules requires the Rab32 family member GLO-1. We show that the loss of glo-1 leads to the mistrafficking of gut granule proteins but does not significantly alter conventional endolysosome biogenesis. GLO-3 directly binds to CCZ-1 and they both function to promote the gut granule association of GLO-1, strongly suggesting that together, GLO-3 and CCZ-1 activate GLO-1. We found that a point mutation in GLO-1 predicted to spontaneously activate, and function independently of it guanine nucleotide exchange factor (GEF), localizes to gut granules and partially restores gut granule protein localization in ccz-1(-) and glo-3(-) mutants. CCZ-1 forms a heterodimeric complex with SAND-1(MON1), which does not function in gut granule formation, to activate RAB-7 in trafficking pathways to conventional lysosomes. Therefore, our data suggest a model whereby the function of a Rab GEF can be altered by subunit exchange. glo-3(-) mutants, which retain low levels of GLO-3 activity, generate gut granules that lack GLO-1 and improperly accumulate RAB-7 in a SAND-1 dependent process. We show that GLO-1 and GLO-3 restrict the distribution of RAB-7 to conventional endolysosomes, providing insights into the segregation of pathways leading to conventional lysosomes and LROs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Grânulos Citoplasmáticos/metabolismo , Sistema Digestório/embriologia , Sistema Digestório/metabolismo , Genes de Helmintos , Lisossomos/metabolismo , Mutação , Biogênese de Organelas , Domínios e Motivos de Interação entre Proteínas , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética
2.
Mol Biol Cell ; 25(7): 1073-96, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24501423

RESUMO

As early endosomes mature, the SAND-1/CCZ-1 complex acts as a guanine nucleotide exchange factor (GEF) for RAB-7 to promote the activity of its effector, HOPS, which facilitates late endosome-lysosome fusion and the consumption of AP-3-containing vesicles. We show that CCZ-1 and the HOPS complex are essential for the biogenesis of gut granules, cell type-specific, lysosome-related organelles (LROs) that coexist with conventional lysosomes in Caenorhabditis elegans intestinal cells. The HOPS subunit VPS-18 promotes the trafficking of gut granule proteins away from lysosomes and functions downstream of or in parallel to the AP-3 adaptor. CCZ-1 also acts independently of AP-3, and ccz-1 mutants mistraffic gut granule proteins. Our results indicate that SAND-1 does not participate in the formation of gut granules. In the absence of RAB-7 activity, gut granules are generated; however, their size and protein composition are subtly altered. These observations suggest that CCZ-1 acts in partnership with a protein other than SAND-1 as a GEF for an alternate Rab to promote gut granule biogenesis. Point mutations in GLO-1, a Rab32/38-related protein, predicted to increase spontaneous guanine nucleotide exchange, specifically suppress the loss of gut granules by ccz-1 and glo-3 mutants. GLO-3 is known to be required for gut granule formation and has homology to SAND-1/Mon1-related proteins, suggesting that CCZ-1 functions with GLO-3 upstream of the GLO-1 Rab, possibly as a GLO-1 GEF. These results support LRO formation occurring via processes similar to conventional lysosome biogenesis, albeit with key molecular differences.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Grânulos Citoplasmáticos/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Endossomos/metabolismo , Fluorescência , Proteínas de Fluorescência Verde/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/citologia , Intestinos/embriologia , Proteínas Mutantes/metabolismo , Transporte Proteico , Supressão Genética , proteínas de unión al GTP Rab7
3.
PLoS One ; 7(8): e43043, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916203

RESUMO

The human disease Hermansky-Pudlak syndrome results from defective biogenesis of lysosome-related organelles (LROs) and can be caused by mutations in subunits of the BLOC-1 complex. Here we show that C. elegans glo-2 and snpn-1, despite relatively low levels of amino acid identity, encode Pallidin and Snapin BLOC-1 subunit homologues, respectively. BLOC-1 subunit interactions involving Pallidin and Snapin were conserved for GLO-2 and SNPN-1. Mutations in glo-2 and snpn-1,or RNAi targeting 5 other BLOC-1 subunit homologues in a genetic background sensitized for glo-2 function, led to defects in the biogenesis of lysosome-related gut granules. These results indicate that the BLOC-1 complex is conserved in C. elegans. To address the function of C. elegans BLOC-1, we assessed the intracellular sorting of CDF-2::GFP, LMP-1, and PGP-2 to gut granules. We validated their utility by analyzing their mislocalization in intestinal cells lacking the function of AP-3, which participates in an evolutionarily conserved sorting pathway to LROs. BLOC-1(-) intestinal cells missorted gut granule cargo to the plasma membrane and conventional lysosomes and did not have obviously altered function or morphology of organelles composing the conventional lysosome protein sorting pathway. Double mutant analysis and comparison of AP-3(-) and BLOC-1(-) phenotypes revealed that BLOC-1 has some functions independent of the AP-3 adaptor complex in trafficking to gut granules. We discuss similarities and differences of BLOC-1 activity in the biogenesis of gut granules as compared to mammalian melanosomes, where BLOC-1 has been most extensively studied for its role in sorting to LROs. Our work opens up the opportunity to address the function of this poorly understood complex in cell and organismal physiology using the genetic approaches available in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Grânulos Citoplasmáticos/metabolismo , Lisossomos/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
4.
Curr Biol ; 22(12): 1057-65, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22658602

RESUMO

BACKGROUND: Microtubules (MTs) are formed from the lateral association of 11-16 protofilament chains of tubulin dimers, with most cells containing 13-protofilament (13-p) MTs. How these different MTs are formed is unknown, although the number of protofilaments may depend on the nature of the α- and ß-tubulins. RESULTS: Here we show that the enzymatic activity of the Caenorhabiditis elegans α-tubulin acetyltransferase (α-TAT) MEC-17 allows the production of 15-p MTs in the touch receptor neurons (TRNs) MTs. Without MEC-17, MTs with between 11 and 15 protofilaments are seen. Loss of this enzymatic activity also changes the number and organization of the TRN MTs and affects TRN axonal morphology. In contrast, enzymatically inactive MEC-17 is sufficient for touch sensitivity and proper process outgrowth without correcting the MT defects. Thus, in addition to demonstrating that MEC-17 is required for MT structure and organization, our results suggest that the large number of 15-p MTs, normally found in the TRNs, is not essential for mechanosensation. CONCLUSION: These experiments reveal a specific role for α-TAT in the formation of MTs and in the production of higher order MTs arrays. In addition, our results indicate that the α-TAT protein has functions that require acetyltransferase activity (such as the determination of protofilament number) and others that do not (presence of internal MT structures).


Assuntos
Acetiltransferases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Mecanorreceptores/metabolismo , Microtúbulos/enzimologia , Microtúbulos/fisiologia , Tubulina (Proteína)/metabolismo , Acetilação , Acetiltransferases/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Colchicina , Hibridização in Situ Fluorescente , Microscopia Eletrônica , Microtúbulos/ultraestrutura , Mutação/genética
5.
Pain ; 146(1-2): 205-13, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19695776

RESUMO

Cognitive-behavioral therapy (CBT) interventions show promise for decreasing chronic pain in youth. However, the availability of CBT is limited by many factors including distance to major treatment centers and expense. This study evaluates a more accessible treatment approach for chronic pediatric pain using an Internet-delivered family CBT intervention. Participants included 48 children, aged 11-17 years, with chronic headache, abdominal, or musculoskeletal pain and associated functional disability, and their parents. Children were randomly assigned to a wait-list control group or an Internet treatment group. Primary treatment outcomes were pain intensity ratings (0-10 NRS) and activity limitations on the Child Activity Limitations Interview, both completed via an online daily diary. In addition to their medical care, the Internet treatment group completed 8 weeks of online modules including relaxation training, cognitive strategies, parent operant techniques, communication strategies, and sleep and activity interventions. Youth randomized to the wait-list control group continued with the current medical care only. Findings demonstrated significantly greater reduction in activity limitations and pain intensity at post-treatment for the Internet treatment group and these effects were maintained at the three-month follow-up. Rate of clinically significant improvement in pain was also greater for the Internet treatment group than for the wait-list control group. There were no significant group differences in parental protectiveness or child depressive symptoms post-treatment. Internet treatment was rated as acceptable by all children and parents. Findings support the efficacy and acceptability of Internet delivery of family CBT for reducing pain and improving function among children and adolescents with chronic pain.


Assuntos
Terapia Cognitivo-Comportamental/métodos , Internet , Manejo da Dor , Dor/psicologia , Adolescente , Criança , Doença Crônica , Depressão/etiologia , Depressão/psicologia , Feminino , Seguimentos , Humanos , Masculino , Atividade Motora , Medição da Dor , Aceitação pelo Paciente de Cuidados de Saúde , Cooperação do Paciente , Satisfação do Paciente , Tamanho da Amostra , Fatores Socioeconômicos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...